Motivation-Aware Task Assignment in Crowdsourcing
نویسندگان
چکیده
We investigate how to leverage the notion of motivation in assigning tasks to workers and improving the performance of a crowdsourcing system. In particular, we propose to model motivation as the balance between task diversity–i.e., the difference in skills among the tasks to complete, and task payment–i.e., the difference between how much a chosen task offers to pay and how much other available tasks pay. We propose to test different task assignment strategies: (1) relevance, a strategy that assigns matching tasks, i.e., those that fit a worker’s profile, (2) diversity, a strategy that chooses matching and diverse tasks, and (3) div-pay, a strategy that selects matching tasks that offer the best compromise between diversity and payment. For each strategy, we study multiple iterations where tasks are re-assigned to workers as their motivation evolves. At each iteration, relevance and diversity assign tasks to a worker from an available pool of filtered tasks. div-pay, on the other hand, estimates each worker’s motivation on-the-fly at each iteration, and uses it to assign tasks to the worker. Our empirical experiments study the impact of each strategy on overall performance. We examine both requester-centric and worker-centric performance dimensions and find that different strategies prevail for different dimensions. In particular, relevance offers the best task throughput while div-pay achieves the best outcome quality.
منابع مشابه
Task Relevance and Diversity as Worker Motivation in Crowdsourcing
Task assignment is a central component in crowdsourcing. Organizational studies have shown that worker motivation in completing tasks has a direct impact on the quality of individual contributions. In this work, we examine motivationaware task assignment in the presence of a set of workers. We propose to model motivation as a balance between task relevance and task diversity and argue that an a...
متن کاملContext-Aware Hierarchical Online Learning for Performance Maximization in Mobile Crowdsourcing
In mobile crowdsourcing, mobile users accomplish outsourced human intelligence tasks. Mobile crowdsourcing requires an appropriate task assignment strategy, since different workers may have different performance in terms of acceptance rate and quality. Task assignment is challenging, since a worker’s performance (i) may fluctuate, depending on both the worker’s current context and the task cont...
متن کاملSkill-Aware Task Assignment in Crowdsourcing Applications
Besides simple human intelligence tasks such as image labeling, crowdsourcing platforms propose more and more tasks that require very specific skills. In such a setting we need to model skills that are required to execute a particular job. At the same time in order to match tasks to the crowd, we have to model the expertise of the participants. We present such a skill model that relies on a tax...
متن کاملPerform Three Data Mining Tasks with Crowdsourcing Process
For data mining studies, because of the complexity of doing feature selection process in tasks by hand, we need to send some of labeling to the workers with crowdsourcing activities. The process of outsourcing data mining tasks to users is often handled by software systems without enough knowledge of the age or geography of the users' residence. Uncertainty about the performance of virtual user...
متن کاملA reputation-aware decision-making approach for improving the efficiency of crowdsourcing systems
A crowdsourcing system is a useful platform for utilizing the intelligence and skills of the mass. Nevertheless, like any open system that involves the exchange of things of value, selfish and malicious behaviors exist in crowdsourcing systems and need to be mitigated. Trust management has been proven to be a viable solution in many systems. However, a major difference between crowdsourcing sys...
متن کامل